Far-Wake Meandering of a Wind Turbine Model with Imposed Motions: An Experimental S-PIV Analysis

Author:

Belvasi NavidORCID,Conan BorisORCID,Schliffke Benyamin,Perret Laurent,Desmond CianORCID,Murphy JimmyORCID,Aubrun SandrineORCID

Abstract

Intra-array wake meandering increases fatigue loading in downstream turbines and decreases farm total power output. In the case of floating offshore wind turbines (FOWTs), the motions of the floating substructure could have a non-neglectable contribution to wake meandering dynamics. This research experientially analyses the influence of imposed motions on the far-wake meandering of a FOWT. The study considers a 1:500 scaled porous disc representation of the 2 MW FLOATGEN system (BW Ideol) located off the coast of Le Croisic, France. A representative marine neutral atmospheric boundary layer is generated in a wind tunnel whilst monochromic and multi-frequency content three degrees of freedom (surge, heave, pitch) motion is imposed on the model tower. The stereoscopic particle image velocimetry (S-PIV) is then utilised to measure velocity vectors at a cross-section located at 8.125 D downstream of the model. No significant effect on the far-wake recovery in the velocity, turbulence and turbulent kinetic energy distribution is observed. However, the frequency characteristics of the imposed motions were observed in the far-wake meandering spectral content and streamwise characteristics of far-wake, such as normalised available power. While the frequency spectrum of the vertical oscillations showed more sensitivity to the three degrees of freedom (3DoF) imposed motion in all frequency ranges, the lateral oscillation was sensitive for the reduced frequency above 0.15. The monochromic motions with a reduced frequency of less than 0.15 also did not influence the far-wake centre distribution in both lateral and vertical directions. Regardless of reduced frequency, imposed motions show a strong effect on average power, in which the harmonic signature can distinguish in far-wake memory. This study provides an investigation, which its result could be beneficial to developing and examining wake models for offshore wind turbines, with a particular focus on the influence of FOWTs motions.

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Floating Wind: The Power To Commercialize,2020

2. Quantification of power losses due to wind turbine wake interactions through SCADA, meteorological and wind LiDAR data

3. Numerical Study of Wake Interactions between Two Floating Offshore Wind Turbines;Huang;Proceedings of the 28th International Ocean and Polar Engineering Conference,2018

4. Wake Effect of a Horizontal Axis Wind Turbine on the Performance of a Downstream Turbine

5. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3