Building Social License for Automated Demand-Side Management—Case Study Research in the Swiss Residential Sector

Author:

Michellod Julien Lancelot,Kuch Declan,Winzer ChristianORCID,Patel Martin K.,Yilmaz SelinORCID

Abstract

Demand-side management (DSM) is increasingly needed for answering electricity flexibility needs in the upcoming transformation of energy systems. Use of automation leads to better efficiency, but its acceptance is problematic since it is linked with several issues, such as privacy or loss of control. Different approaches investigate what should be done for building community support for automation for the purpose of DSM, but it is only recently that literature has shown interest in the application of social license as a concept merging several issues traditionally treated separately. The social license concept emerged in the mining sector before being adopted for other problematic resources. It serves to identify different levels of community support for a project/company as well as various factors that influence it, such as economic and socio-political legitimacy and interactional trust. This paper investigates, through empirical evidence from eight case studies, what has been done in different contexts to build trust and legitimacy for an automated DSM project. Our findings suggest that patterns exist in respect of benefits, risks and rationale presented, the retention of control, information gathered, and inclusion and that these factors differ according to appliances/devices automated, operators of automation, and end-users targeted.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference108 articles.

1. Paris Agreement,2015

2. Global Renewables Outlook: Energy Transformation 2050,2020

3. End-user centred infrastructure operation: towards integrated end-use service delivery

4. UsersTCP 2021 Annual Report,2022

5. Climate change mitigation and electrification

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3