Research on Aerodynamic Characteristics of Crescent Iced Conductor Based on S-A Finite Element Turbulence Model

Author:

Liao Shaokai,Zhang YanORCID,Chen Xi,Cao Pengcheng

Abstract

Galloping is a typical wind-induced phenomenon in iced conductors, which can have serious impacts on the safe and stable operation of power systems. The aerodynamic characteristics of an iced conductor are the key factor in the study of galloping, which can be determined mainly by the numerical simulation of flow past an iced conductor. Based on the Reynolds-averaged Navier-Stokes (RANS) equations closed by the Spalart-Allmaras (S-A) turbulence model, the third-order Runge-Kutta method along the uniform streamline and Galerkin method are used for temporal and spatial discretization, respectively. The convection and diffusion terms in the discretization scheme are treated semi-implicitly, and the finite element scheme based on the S-A turbulence model is presented and used to numerically simulate flow past a crescent iced conductor. We systematically investigate the effects of icing thickness, wind speed, and wind attack angle on aerodynamic coefficients and flow patterns. Based on the experimental results, the effectiveness of the present algorithm is verified. Using the streamline diagram and pressure distribution diagram of the crescent-shaped iced conductor, the mechanism for the sharp peak of the lift coefficient is explored. Combined with the galloping mechanism of Den Hartog and Nigol, the galloping instability zone of the crescent-shaped iced conductor is analyzed.

Funder

National Nature Science Foundation of China

General Scientific Research Project of Zhejiang Provincial Department of Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3