Hydrochemical Characteristics and Evolution under the Influence of Multiple Anthropogenic Activities in Karst Aquifers, Northern China

Author:

Zhang Chao12,Zhang Baoxiang3,Zhang Wenqing12,Zou Junyu12,Jia Ruoyu12,Yang Yuesuo12ORCID

Affiliation:

1. Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China

2. Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China

3. Water Resources Research Institute of Shandong Province, Jinan 250013, China

Abstract

The intensification of anthropogenic activities (agriculture, industry, and exploitation of water resources) during urbanization has posed significant challenges to the aquatic environment, particularly in karst regions. Karst aquifers are highly susceptible to surface contaminants and exhibit minimal natural remediation capabilities. Our understanding of the anthropogenic activities involved in these sensitive karst systems remains limited. To address this gap, we conducted a comprehensive study, collecting 285 groundwater samples in Feicheng, northern China, from 1996 to 2015. The overexploitation of karst groundwater has resulted in several concerns. The whole dataset was classified into four groups according to land use. Water quality assessments revealed a yearly decline, particularly in industrial and agricultural areas. The water chemistry transitioned from Ca-Mg-HCO3 to Ca-Mg-HCO3-SO4. Such evolution was attributed to natural hydrogeochemical processes, atmospheric precipitation, and anthropogenic inputs. Natural factors included water-rock interactions (the mineral dissolution) and ion exchange. Absolute principal component scores with multiple linear regression (APCS-MLR) were used to quantitatively estimate the sources of pollution. The results showed that hydrogeological settings (recharge, runoff, and discharge) were crucial in the hydrochemistry evolution of karst groundwater systems. In agricultural areas, it is recognized that much of the NO3− accumulation in aquifers came from upstream inputs in the groundwater system, not just irrigation and fertilization. Urban areas were affected by Cl− pollution, primarily due to domestic waste. Industrial regions of recharge zones were more susceptible to atmospheric precipitation and industrial waste, with pollutants infiltrating through rainfall and degrading water quality. Mining areas exhibit higher SO42− and lower pH due to the oxidation of sulfur-containing minerals. Therefore, the rapid response and low self-purification capacity of groundwater in karst regions necessitate caution in urban planning to mitigate impacts on these fragile systems.

Funder

Key Research and Development Program of Shandong province

Water Resources Research Program of Shandong province

National Natural Science Foundation of China

Natural Science Foundation Program of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3