Selection of the Reference Gene for Expression Normalization in Salsola ferganica under Abiotic Stress

Author:

Wang Shuran,Zhang Sheng

Abstract

Salsola ferganica is a natural desert herbaceous plant in the arid area of western and northwestern China. Because of its salt tolerance and drought resistance, it is of great significance in desert afforestation and sand-fixing capacity. There has been much research on the genes involved in plants under desert stresses in recent years. The application of the best internal reference genes for standardization was a critical procedure in analyzing the gene expression under different types. Even so, the reference gene has not been reported in the application of gene expression normalization of S. ferganica. In this study, nine reference genes (TUA-1726, TUA-1760, TUB, GAPDH, ACT, 50S, HSC70, APT, and U-box) in S. ferganica were adopted and analyzed under six different treatments (ABA, heat, cold, NaCl, methyl viologen (MV), and PEG). The applicability of candidate genes was evaluated by statistical software, including geNorm, NormFinder, BestKeeper, and RefFinder, based on their stability values in all the treatments. These results indicated that the simultaneous selection of two stable reference genes would fully standardize the optimization of the normalization research. To verify the feasibility of the above internal reference genes, the CT values of AP2/ERF transcription factor family genes were standardized using the most (ACT) and least (GAPDH) stable reference genes in S. ferganica seedlings under six abiotic stresses. The research showed that HSC70 and U-box were the most appropriate reference genes in ABA stressed samples, and ACT and U-box genes were the optimal references for heat-stressed samples. TUA-1726 and U-box showed the smallest value in gene expression levels of cold treatment. The internal reference groups of the best applicability for the other samples were U-box and ACT under NaCl treatment, ACT and TUA-1726 under MV stress, HSC70 and TUB under PEG treatment, and ACT in all samples. ACT and U-box showed higher stability than the other genes based on the comprehensive stability ranking of RefFinder, as determined by the geometric mean in this study. These results will contribute to later gene expression studies in other closely related species and provide an important foundation for gene expression analysis in S. ferganica.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference48 articles.

1. Advances in research on the molecular mechanism of plant salinity tolerance and morphological characters of Chenopodiaceae;Gao;Biotechnol. Bull.,2008

2. Recent studies on the chemistry and bioactivity of Chenopodiaceous plants;Du;Nat. Prod. Res. Dev.,2007

3. Effects of environmental stress on seed germination and seedling growth of Salsola ferganica (Chenopodiaceae)

4. Effects of salt, alkali and salt–alkali mixed stresses on seed germination of the halophyte Salsola ferganica (Chenopodiaceae)

5. Real-time PCR for mRNA quantitation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3