Prediction of Alzheimer’s Disease by a Novel Image-Based Representation of Gene Expression

Author:

Kalkan HabilORCID,Akkaya Umit Murat,Inal-Gültekin Güldal,Sanchez-Perez Ana Maria

Abstract

Early intervention can delay the progress of Alzheimer’s Disease (AD), but currently, there are no effective prediction tools. The goal of this study is to generate a reliable artificial intelligence (AI) model capable of detecting the high risk of AD, based on gene expression arrays from blood samples. To that end, a novel image-formation method is proposed to transform single-dimension gene expressions into a discriminative 2-dimensional (2D) image to use convolutional neural networks (CNNs) for classification. Three publicly available datasets were pooled, and a total of 11,618 common genes’ expression values were obtained. The genes were then categorized for their discriminating power using the Fisher distance (AD vs. control (CTL)) and mapped to a 2D image by linear discriminant analysis (LDA). Then, a six-layer CNN model with 292,493 parameters were used for classification. An accuracy of 0.842 and an area under curve (AUC) of 0.875 were achieved for the AD vs. CTL classification. The proposed method obtained higher accuracy and AUC compared with other reported methods. The conversion to 2D in CNN offers a unique advantage for improving accuracy and can be easily transferred to the clinic to drastically improve AD (or any disease) early detection.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference42 articles.

1. Early-onset Alzheimer Disease and Its Variants

2. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families

3. Mutation analysis of disease-causing genes in patients with early onset or familial forms of Alzheimer’s disease and frontotemporal dementia;de la Vega;BMC Genom.,2022

4. Early-Onset Familial Alzheimer's Disease (EOFAD)

5. The genetics of Alzheimer's disease

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3