Genome-Wide Identification, Characterization, and Expression Profiling Analysis of SPL Gene Family during the Inflorescence Development in Trifolium repens

Author:

Ma Jieyu,Nie Gang,Yang Zhongfu,Ma Sainan,Fan Jinwan,Hu Ruchang,Wu Feifei,Zhang XinquanORCID

Abstract

Trifolium repens is the most widely cultivated perennial legume forage in temperate region around the world. It has rich nutritional value and good palatability, seasonal complementarity with grasses, and can improve the feed intake and digestibility of livestock. However, flowering time and inflorescence development directly affects the quality and yield of T. repens, as well as seed production. The Squa promoter binding protein-like (SPL) gene family is a plant specific transcription factor family, which has been proved to play a critical role in regulating plant formation time and development of flowers. In this study, a total of 37 TrSPL genes were identified from the whole genome of T. repens and were divided into nine clades based on phylogenetic tree. Seventeen TrSPL genes have potential target sites for miR156. The conserved motif of squamosa promoter binding protein (SBP) contains two zinc finger structures and one NLS structure. Gene structure analysis showed that all TrSPL genes contained SBP domain, while ankyrin repeat region was just distributed in part of genes. 37 TrSPL genes were relatively dispersedly distributed on 16 chromosomes, and 5 pairs of segmental repeat genes were found, which indicated that segmental duplication was the main way of gene expansion. Furthermore, the gene expression profiling showed that TrSPL11, TrSPL13, TrSPL22, and TrSPL26 were highly expressed only in the early stage of inflorescence development, while TrSPL1 and TrSPL6 are highly expressed only in the mature inflorescence. Significantly, the expression of TrSPL4 and TrSPL12 increased gradually with the development of inflorescences. The results of this study will provide valuable clues for candidate gene selection and elucidating the molecular mechanism of T. repens flowering regulation.

Funder

the China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3