Abstract
Transcriptomic profiling of several drugs in cancer cell lines has been utilised to obtain drug-specific signatures and guided combination therapy to combat drug resistance and toxicity. Global metabolomics reflects changes due to altered activity of enzymes, environmental factors, etc. Integrating transcriptomics and metabolomics can provide genotype-phenotype correlation, providing meaningful insights into alterations in gene expression and its outcome to understand differential metabolism and guide therapy. This study uses a multi-omics approach to understand the global gene expression and metabolite changes induced by Disarib, a novel Bcl2-specific inhibitor in the Ehrlich adenocarcinoma (EAC) breast cancer mouse model. RNAseq analysis was performed on EAC mouse tumours treated with Disarib and compared to the controls. The expression of 6 oncogenes and 101 tumour suppressor genes interacting with Bcl2 and Bak were modulated upon Disarib treatment. Cancer hallmark pathways like DNA repair, Cell cycle, angiogenesis, and mitochondrial metabolism were downregulated, and programmed cell death platelet-related pathways were upregulated. Global metabolomic profiling using LC-MS revealed that Oncometabolites like carnitine, oleic acid, glycine, and arginine were elevated in tumour mice compared to normal and were downregulated upon Disarib treatment. Integrated transcriptomic and metabolomic profiles identified arginine metabolism, histidine, and purine metabolism to be altered upon Disarib treatment. Pro-angiogenic metabolites, arginine, palmitic acid, oleic acid, and myristoleic acid were downregulated in Disarib-treated mice. We further validated the effect of Disarib on angiogenesis by qRT-PCR analysis of genes in the VEGF pathway. Disarib treatment led to the downregulation of pro-angiogenic markers. Furthermore, the chorioallantoic membrane assay displayed a reduction in the formation of the number of secondary blood vessels upon Disarib treatment. Disarib reduces tumours by reducing oncometabolite and activating apoptosis and downregulating angiogenesis.
Funder
Department of Science & Technology
Department of Biotechnology
Subject
Genetics (clinical),Genetics
Reference90 articles.
1. Targeted cancer therapy
2. BCL2 Protein in Prediction of Relapse in Triple-Negative Breast Cancer (TNBC) Treated with Adjuvant Anthracycline-Based Chemotherapy;Bouchalova,2012
3. Bcl-2 immunoreactivity in breast carcinoma correlates with hormone receptor positivity;Bhargava;Am. J. Pathol.,1994
4. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies
5. BCL2: A promising cancer therapeutic target