Identifying Cancer Subtypes Using a Residual Graph Convolution Model on a Sample Similarity Network

Author:

Dai Wei,Yue Wenhao,Peng WeiORCID,Fu Xiaodong,Liu Li,Liu Lijun

Abstract

Cancer subtype classification helps us to understand the pathogenesis of cancer and develop new cancer drugs, treatment from which patients would benefit most. Most previous studies detect cancer subtypes by extracting features from individual samples, ignoring their associations with others. We believe that the interactions of cancer samples can help identify cancer subtypes. This work proposes a cancer subtype classification method based on a residual graph convolutional network and a sample similarity network. First, we constructed a sample similarity network regarding cancer gene co-expression patterns. Then, the gene expression profiles of cancer samples as initial features and the sample similarity network were passed into a two-layer graph convolutional network (GCN) model. We introduced the initial features to the GCN model to avoid over-smoothing during the training process. Finally, the classification of cancer subtypes was obtained through a softmax activation function. Our model was applied to breast invasive carcinoma (BRCA), glioblastoma multiforme (GBM) and lung cancer (LUNG) datasets. The accuracy values of our model reached 82.58%, 85.13% and 79.18% for BRCA, GBM and LUNG, respectively, which outperformed the existing methods. The survival analysis of our results proves the significant clinical features of the cancer subtypes identified by our model. Moreover, we can leverage our model to detect the essential genes enriched in gene ontology (GO) terms and the biological pathways related to a cancer subtype.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Yunnan Province of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3