Genome-Wide Identification and Expression Analysis of the Basic Leucine Zipper (bZIP) Transcription Factor Gene Family in Fusarium graminearum

Author:

Hussain Sarfaraz,Tai Bowen,Hussain AtharORCID,Jahan Israt,Yang Bolei,Xing FuguoORCID

Abstract

The basic leucine zipper (bZIP) is a widely found transcription factor family that plays regulatory roles in a variety of cellular processes including cell growth and development and various stress responses. However, the bZIP gene family has not been well studied at a genome-wide scale in Fusarium graminearum (Fg), a potent pathogen of cereal grains. In the present study, we conducted a genome-wide identification, characterization, and expression profiling of 22 F. graminearum bZIP (FgbZIP) genes at different developmental stages and under various abiotic stresses. All identified FgbZIPs were categorized into nine groups based on their sequence similarity and phylogenetic tree analysis. Furthermore, the gene structure analysis, conserved motif analysis, chromosomal localization, protein network studies, and synteny analysis were performed. The symmetry of the exon and intron varied with the phylogenetic groups. The post-translational modifications (PTMs) analysis also predicted several phosphorylation sites in FgbZIPs, indicating their functional diversity in cellular processes. The evolutionary study identified many orthogroups among eight species and also predicted several gene duplication events in F. graminearum. The protein modeling indicated the presence of a higher number of α-helices and random coils in their structures. The expression patterns of FgbZIP genes showed that 5 FgbZIP genes, including FgbZIP_1.1, FgbZIP_1.3, FgbZIP_2.6 FgbZIP_3.1 and FgbZIP_4.3, had high expression at different growth and conidiogenesis stages. Similarly, eight genes including FgbZIP_1.1, FgbZIP_1.6, FgbZIP_2.3, FgbZIP_2.4, FgbZIP_4.1, FgbZIP_4.2, FgbZIP_4.3 and FgbZIP_4.6 demonstrated their putative role in response to various abiotic stresses. In summary, these results provided basic information regarding FgbZIPs which are helpful for further functional analysis.

Funder

National Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3