The Value of the Stemness Index in Ovarian Cancer Prognosis

Author:

Yuan Hongjun,Yu Qian,Pang Jianyu,Chen Yongzhi,Sheng Miaomiao,Tang Wenru

Abstract

Ovarian cancer (OC) is one of the most common gynecological malignancies. It is associated with a difficult diagnosis and poor prognosis. Our study aimed to analyze tumor stemness to determine the prognosis feature of patients with OC. At this job, we selected the gene expression and the clinical profiles of patients with OC in the TCGA database. We calculated the stemness index of each patient using the one-class logistic regression (OCLR) algorithm and performed correlation analysis with immune infiltration. We used consensus clustering methods to classify OC patients into different stemness subtypes and compared the differences in immune infiltration between them. Finally, we established a prognostic signature by Cox and LASSO regression analysis. We found a significant negative correlation between a high stemness index and immune score. Pathway analysis indicated that the differentially expressed genes (DEGs) from the low- and high-mRNAsi groups were enriched in multiple functions and pathways, such as protein digestion and absorption, the PI3K-Akt signaling pathway, and the TGF-β signaling pathway. By consensus cluster analysis, patients with OC were split into two stemness subtypes, with subtype II having a better prognosis and higher immune infiltration. Furthermore, we identified 11 key genes to construct the prognostic signature for patients with OC. Among these genes, the expression levels of nine, including SFRP2, MFAP4, CCDC80, COL16A1, DUSP1, VSTM2L, TGFBI, PXDN, and GAS1, were increased in the high-risk group. The analysis of the KM and ROC curves indicated that this prognostic signature had a great survival prediction ability and could independently predict the prognosis for patients with OC. We established a stemness index-related risk prognostic module for OC, which has prognostic-independent capabilities and is expected to improve the diagnosis and treatment of patients with OC.

Funder

Yunnan High-level Personnel Training Support Program

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3