Excavation of Genes Responsive to Brassinosteroids by Transcriptome Sequencing in Adiantum flabellulatum Gametophytes

Author:

Cai ZepingORCID,Xie Zhenyu,Wang Xiaochen,Zhang Shuixian,Wu Qian,Yu Xudong,Guo Yi,Gao Shuyi,Zhang Yunge,Xu Shitao,Wang Honggang,Luo Jiajia

Abstract

Brassinosteroids (BRs) are a class of polyhydroxysteroid plant hormones; they play important roles in the development and stress resistance of plants. The research on BRs has mainly been carried out in angiosperms, but in ferns—research is still limited to the physiological level and is not in-depth. In this study, Adiantum flabellulatum gametophytes were used as materials and treated with 10−6 M brassinolide (BL). The differentially expressed genes (DEGs) responsive to BRs were identified by transcriptome sequencing, GO, KEGG analysis, as well as a quantitative real-time polymerase chain reaction. From this, a total of 8394 DEGs were screened. We found that the expressions of photosynthetic genes were widely inhibited by high concentrations of BL in A. flabellulatum gametophytes. Moreover, we detected many BR synthase genes, except BR6ox2, which may be why castasterone (CS) rather than BL was detected in ferns. Additionally, we identified (for the first time) that the expressions of BR synthase genes (CYP90B1, CYP90C1, CYP90D1, CPD, and BR6ox1) were negatively regulated by BL in fern gametophytes, which indicated that ferns, including gametophytes, also needed the regulatory mechanism for maintaining BR homeostasis. Based on transcriptome sequencing, this study can provide a large number of gene expression data for BRs regulating the development of fern gametophytes.

Funder

the Hainan Provincial Natural Science Foundation of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3