Multi-Objective Artificial Bee Colony Algorithm Based on Scale-Free Network for Epistasis Detection

Author:

Gu Yijun,Sun Yan,Shang JunliangORCID,Li FengORCID,Guan Boxin,Liu Jin-Xing

Abstract

In genome-wide association studies, epistasis detection is of great significance for the occurrence and diagnosis of complex human diseases, but it also faces challenges such as high dimensionality and a small data sample size. In order to cope with these challenges, several swarm intelligence methods have been introduced to identify epistasis in recent years. However, the existing methods still have some limitations, such as high-consumption and premature convergence. In this study, we proposed a multi-objective artificial bee colony (ABC) algorithm based on the scale-free network (SFMOABC). The SFMOABC incorporates the scale-free network into the ABC algorithm to guide the update and selection of solutions. In addition, the SFMOABC uses mutual information and the K2-Score of the Bayesian network as objective functions, and the opposition-based learning strategy is used to improve the search ability. Experiments were performed on both simulation datasets and a real dataset of age-related macular degeneration (AMD). The results of the simulation experiments showed that the SFMOABC has better detection power and efficiency than seven other epistasis detection methods. In the real AMD data experiment, most of the single nucleotide polymorphism combinations detected by the SFMOABC have been shown to be associated with AMD disease. Therefore, SFMOABC is a promising method for epistasis detection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3