Interspecific and Intraspecific Hybrid Rootstocks to Improve Horticultural Traits and Soil-Borne Disease Resistance in Tomato

Author:

Vanlay Mean,Samnang Song,Jung Hee-Jong,Choe Phillip,Kang Kwon KyooORCID,Nou Ill-SupORCID

Abstract

Tomato rootstocks are important to increase yield and control soil-borne pathogens, increasing vigor for a longer crop cycle and tolerance to biotic and abiotic stress. This study, conducted in the greenhouse of Sunchon National University during the period from 2019 to 2022, aimed to identify local soil-borne-disease resistant interspecific and intraspecific tomato hybrid rootstocks. The 71 interspecific hybrids (S. lycopersicum × S. habrochaites) showed that the germination vigor (GV) was less than Maxifort, except for several combinations. The germination rate (GP) of cross-species hybrids showed a different pattern according to the hybrid combinations, of which three combinations showed less than 30%. The horticultural traits, such as GV and GP, of the intraspecies hybrid (S. l × S. l) combination were significantly improved compared to that of Maxifort. In 71 combinations (S. l × S. h) and 25 combinations (S. l × S. l), MAS was used to evaluate the resistance of eight genes related to soil-borne pathogens, four genes related to vector-mediated pathogens, and three genes related to air-borne pathogens. The results showed that the new hybrid combination had improved resistance over the commercial-stock Maxifort. Therefore, interspecies and intraspecies hybrid techniques for breeding commercial rootstocks can be utilized as a way to improve horticultural properties and resistance to soil-borne diseases in tomato.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference76 articles.

1. The origin of the cultivated tomato

2. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae);Peralta;Syst. Bot. Monogr.,2008

3. TOMATO PRODUCTION SYSTEMS AND THEIR APPLICATION TO THE TROPICS

4. FAOSTAThttps://www.fao.org/faostat/en/#home

5. Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3