Identification of miRNAs in Response to Sweet Potato Weevil (Cylas formicarius) Infection by sRNA Sequencing

Author:

Lei Jian,Mei Yuqin,Jin Xiaojie,Liu Yi,Wang Lianjun,Chai Shasha,Cheng Xianliang,Yang Xinsun

Abstract

The sweet potato weevil (Cylas formicarius) is an important pest in the growing and storage of sweet potatoes. It is a common pest in the sweet potato production areas of southern China, causing serious harm to the development of the sweet potato industry. For the existing cultivars in China and abroad, there is no sweet potato variety with complete resistance to the sweet potato weevil. Thus, understanding the regulation mechanisms of sweet potato weevil resistance is the prerequisite for cultivating sweet potato varieties that are resistant to the sweet potato weevil. However, very little progress has been made in this field. In this study, we inoculated adult sweet potato weevils into sweet potato tubers. The infected sweet potato tubers were collected at 0, 24, 48, and 72 h. Then, a miRNA library was constructed for Eshu 6 and Guang 87 sweet potato tubers infected for different lengths of time. A total of 407 known miRNAs and 298 novel miRNAs were identified. A total of 174 differentially expressed miRNAs were screened out from the known miRNAs, and 247 differentially expressed miRNAs were screened out from the new miRNAs. Moreover, the targets of the differentially expressed miRNAs were predicted and their network was further investigated through GO analysis and KEGG analysis using our previous transcriptome data. More importantly, we screened 15 miRNAs and their target genes for qRT-PCR verification to confirm the reliability of the high-throughput sequencing data, which indicated that these miRNAs were detected and most of the expression results were consistent with the sequencing results. These results provide theoretical and data-based resources for the identification of miRNAs in response to sweet potato weevil infection and an analysis of the molecular regulatory mechanisms involved in insect resistance.

Funder

Leading talent training plan of Hubei Academy of Agricultural Sciences

National Key R&D Program of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference55 articles.

1. Bioinformatics analysis of microRNAs and prediction of target genes associated with cold tolerance in sugarcane;Zhu;Guihaia,2021

2. Global small RNA transcriptome profiling of rice under drought stress;Liu;J. Agric. Sci. Technol.,2021

3. Prediction of plant miRNA targets;Pandey;Methods Mol. Biol.,2019

4. TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs

5. Regulation of Plant miRNA Biogenesis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3