Analysis of the PRA1 Genes in Cotton Identifies the Role of GhPRA1.B1-1A in Verticillium dahliae Resistance

Author:

Wu Na,Li Wen-Jie,Chen Chen,Zhao Yan-PengORCID,Hou Yu-Xia

Abstract

Verticillium wilt in cotton (Gossypium hirsutum) is primarily caused by Verticillium dahliae. Previous data suggest that prenylated RAB acceptors (PRAs) play essential roles in environmental plant adaptation, although the potential roles of PRA1 in cotton are unclear. Therefore, in this study, PRA1 family members were identified in G. hirsutum, and their roles in biotic and abiotic stresses were analyzed. Thirty-seven GhPRA1 family members were identified in upland cotton, which were divided into eight groups. Gene structure and domain analyses revealed that the sequences of GhPRA1 members in each group were highly conserved. Many environmental stress-related and hormone-response cis-acting elements were identified in the GhPRA1 promoter regions, indicating that they may respond to biotic and abiotic stresses. Expression analysis revealed that GhPRA1 members were widely expressed in upland cotton. The GhPRA1 genes responded to abiotic stress: drought, cold, salt, and heat stress. GhPRA1.B1-1A expression increased after V. dahliae infection. Furthermore, the functional role of GhPRA1.B1-1A was confirmed by overexpression in Arabidopsis thaliana, which enhanced the resistance to V. dahliae. In contrast, V. dahliae resistance was significantly weakened via virus-induced gene silencing of GhPRA1.B1-1A in upland cotton. Simultaneously, reactive oxygen species accumulation; the H2O2, salicylic acid, and jasmonic acid contents; and callose deposition were significantly decreased in cotton plants with GhPRA1.B1-1A silencing. These findings contribute to a better understanding of the biological roles of GhPRA1 proteins and provide candidate genes for cotton breeders for breeding V. dahliae-resistant cultivars.

Funder

National Natural Science Foundation of China

State Key Laboratory of Cotton Biology Open Fund

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3