Investigation of the Genetic Architecture of Pigs Subjected to Breeding Intensification

Author:

Kolosov AnatolyORCID,Getmantseva Lyubov,Kolosova Maria,Romanets TimofeyORCID,Bakoev Nekruz,Romanets Elena,Bakoeva Ilona,Kostyunina OlgaORCID,Prytkov Yuri,Tretiakova Olga,Bakoev Siroj

Abstract

Pigs are strategically important animals for the agricultural industry. An assessment of genetic differentiation between pigs, undergone and not undergone to selection intensification, is of particular interest. Our research was conducted on two groups of Large White pigs grown on the same farm but in different years. A total of 165 samples were selected with 78 LW_А (n = 78, the Russian selection) and LW_B (n = 87, a commercial livestock). For genotyping, we used GeneSeek® GGP Porcine HD Genomic Profiler v1 (Illumina Inc, San Diego, CA, USA). To define breeding characteristics of selection, we used smoothing FST and segment identification of HBD (Homozygous-by-Descent). The results of smoothing FST showed 20 areas of a genome with strong ejection regions of the genome located on all chromosomes except SSC2, SSC3, and SSC8. The average realized autozygosity in Large White pigs of native selection was in (LW_A)—0.21, in LW_В—0.29. LW_А showed 13,338 HBD segments, 171 per one animal, and LW_B—15,747 HBD segments, 181 per one animal. The ejections found by the smoothing FST method were partially localized in the HBD regions. In these areas, the genes ((NCBP1, PLPPR1, GRIN3A, NBEA, TRPC4, HS6ST3, NALCN, SMG6, TTC3, KCNJ6, IKZF2, OBSL1, CARD10, ETV6, VWF, CCND2, TSPAN9, CDH13, CEP128, SERPINA11, PIK3CG, COG5, BCAP29, SLC26A4) were defined. The revealed genes can be of special interest for further studying their influence on an organism of an animal since they can act as candidate genes for selection-significant traits.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3