Abstract
Metopaulias depressus is a non-marine crab endemic to Jamaica that dwells in rainforest bromeliads and exhibits elaborate active parental care behavior. Current genomic resources on M. depressus are rare, limiting the understanding of its adaptation to terrestrial life in species that evolved from marine ancestors. This study reports the complete mitochondrial genome of M. depressus assembled using Sanger sequencing. The AT-rich mitochondrial genome of M. depressus is 15,765 bp in length and comprises 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. A single 691 bp-long intergenic space is assumed to be the control region (CR) or D-loop. A set of selective pressure analyses indicate that the entirety of the PCGs experience purifying selection. Cox1, cox2, nad5, cox3, and atp6 experience strong purifying selection, and atp8 experiences weak purifying selection compared to the rest of the PCGs. The secondary structures of most tRNA genes exhibit a standard ‘cloverleaf’ structure, with the exception of trnS1, which lacks the dihydroxyuridine (DHU) arm but not the loop, the trnH gene, which lacks the thymine pseudouracil cytosine (T) loop but not the arm, and trnM, which exhibits an overly developed T loop. A maximum likelihood phylogenetic analysis based on all PCGs indicated that M. depressus is more closely related to the genera Clistocoeloma, Nanosesarma, and Parasesarma than to Chiromantes, Geosesarma, and Orisarma. This study contributes to deciphering the phylogenetic relationships within the family Sesarmidae and represents a new genomic resource for this iconic crab species.
Subject
Genetics (clinical),Genetics