Evaluation of Intracellular Gene Transfers from Plastome to Nuclear Genome across Progressively Improved Assemblies for Arabidopsis thaliana and Oryza sativa

Author:

Wang HaoqiORCID,Liao Xuezhu,Tembrock Luke R.ORCID,Yang Zuoren,Wu ZhiqiangORCID

Abstract

DNA originating from organellar genomes are regularly discovered in nuclear sequences during genome assembly. Nevertheless, such insertions are sometimes omitted during the process of nuclear genome assembly because the inserted DNA is assigned to organellar genomes, leading to a systematic underestimation of their frequency. With the rapid development of high-throughput sequencing technology, more inserted fragments from organelle genomes can now be detected. Therefore, it is necessary to be aware of the insertion events from organellar genomes during nuclear genome assembly to properly attribute the impact and rate of such insertions in the evolution of nuclear genomes. Here, we investigated the impact of intracellular gene transfer (IGT) from the plastome to the nuclear genome using genome assemblies that were refined through time with technological improvements from two model species, Arabidopsis thaliana and Oryza sativa. We found that IGT from the plastome to the nuclear genome is a dynamic and ongoing process in both A. thaliana and O. sativa, and mostly occurred recently, as the majority of transferred sequences showed over 95% sequence similarity with plastome sequences of origin. Differences in the plastome-to-nuclear genome IGT between A. thaliana and O. sativa varied among the different assembly versions and were associated with the quality of the nuclear genome assembly. IGTs from the plastome to nuclear genome occurred more frequently in intergenic regions, which were often associated with transposable elements (TEs). This study provides new insights into intracellular genome evolution and nuclear genome assembly by characterizing and comparing IGT from the plastome into the nuclear genome for two model plant species.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Chinese Academy of Agricultural Sciences Elite Youth Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plant organellar genomes: much done, much more to do;Trends in Plant Science;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3