Sorbitol Reduces Sensitivity to Alternaria by Promoting Ceramide Kinases (CERK) Expression through Transcription Factor Pswrky25 in Populus (Populus simonii Carr.)

Author:

Qi MengORCID,Wu Rui,Song Zhihua,Dong Biying,Chen Ting,Wang Mengying,Cao Hongyan,Du Tingting,Wang Shengjie,Li Na,Yang Qing,Fu Yujie,Meng Dong

Abstract

Sugar, acting as a signal, can regulate the production of some chemical substance during plant defense responses. However, the molecular basis and regulatory mechanisms of sugar in poplar and other forest trees are still unclear. Sorbitol is a sugar-signaling molecule associated with plant defense. In this study, the pathogen-infested status of poplar was alleviated after exogenous feeding of 50 mM sorbitol. We sequenced and analyzed the transcriptome of poplar leaves before and after inoculation. The results showed that the genes PR1, WRKY, ceramide kinases (CERK) and so on responded to sorbitol feeding and pathogen infestation. We screened for genes related to disease resistance such as PsWRKY25 and PsCERK1 and found that significant disease spots occurred on day six of strep throat infestation. Under sorbitol feeding conditions, the appearance of spots was delayed after the pathogen inoculation. Due to the overexpression of PsWRKY25, the overexpression of PsCERK1 triggered the defense response in poplar. This was also confirmed by PsWRKY25 overexpression experiments. These findings present new insights into the influence of sorbitol on Populus simonii Carr. disease resistance. These results emphasize the value of molecular phenotypes in predicting physiological changes.

Funder

The National Natural Science Foundation of China

Outstanding Young Talent Fund in Beijing Forestry University

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference42 articles.

1. Poplars (Populus spp.): Ecological role, applications and scientific perspectives in the 21st century;Stobrawa;Balt. For.,2014

2. Mixed effects of landscape structure, tree diversity and stand’s relative position on insect and pathogen damage in riparian poplar forests

3. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker

4. Disentangling the genetic origins of a plant pathogen during disease spread using an original molecular epidemiology approach

5. First report of Alternaria alternata causing leaf spot on Populus euphratica in Iran;Osdaghi;Iran. J. Plant Pathol.,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3