Transcriptome Analysis Reveals Altered Expression of Genes Involved in Hypoxia, Inflammation and Immune Regulation in Pdcd10-Depleted Mouse Endothelial Cells

Author:

Fusco CarmelaORCID,Nardella Grazia,Di Filippo LucioORCID,Dejana Elisabetta,Cacchiarelli Davide,Petracca Antonio,Micale LuciaORCID,Malinverno Matteo,Castori Marco

Abstract

Cerebral cavernous malformations (CCM) are capillary malformations affecting the central nervous system and commonly present with headaches, epilepsy and stroke. Treatment of CCM is symptomatic, and its prevention is limited. CCM are often sporadic but sometimes may be multifocal and/or affect multiple family members. Heterozygous pathogenic variants in PDCD10 cause the rarest and apparently most severe genetic variant of familial CCM. We carried out an RNA-Seq and a Q-PCR validation analysis in Pdcd10-silenced and wild-type mouse endothelial cells in order to better elucidate CCM molecular pathogenesis. Ninety-four differentially expressed genes presented an FDR-corrected p-value < 0.05. A functionally clustered dendrogram showed that differentially expressed genes cluster in cell proliferation, oxidative stress, vascular processes and immune response gene-ontology functions. Among differentially expressed genes, the major cluster fell in signaling related to inflammation and pathogen recognition, including HIF1α and Nos2 signaling and immune regulation. Validation analysis performed on wild-type, Pdcd10-null and Pdcd10-null reconstituted cell lines was consistent with RNA-Seq data. This work confirmed previous mouse transcriptomic data in endothelial cells, which are recognized as a critical tissue for CCM formation and expands the potential molecular signatures of PDCD10-related familial CCM to alterations in inflammation and pathogen recognition pathways.

Funder

Ministry of Health

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3