Influence Mechanism of Geometric Characteristics of Water Conveyance System on Extreme Water Hammer during Load Rejection in Pumped Storage Plants

Author:

Chen ,Zhang ,Li ,Yu

Abstract

Pumped storage plants (PSPs) have achieved rapid development and deployment worldwide since the penetration of intermittent renewable energy sources (RES). Hydraulic transient analysis in the PSP, to obtain the control parameters such as extreme water hammer pressure, is vital to the safe design of water conveyance system. Empirically, simultaneous load rejection (SLR) is commonly accepted as the control condition for extreme water hammer, while it is not completely true for the PSP. Employing theoretical analysis and numerical simulation, this study systematically investigates the effects of geometric characteristics on the extreme water hammer, and reveals the mechanism leading to the maximum spiral case pressure (SCP) during a two-stage load rejection (TLR) process. The results indicate that the extreme water hammer pressure is closely related to geometric characteristics of the water conveyance system, performing the allocation of the water inertia time constant of the main and branch pipelines. When the water inertia time constant in the branch pipe is dominant (η1 > 0.24 for example), the maximum SCP will occur in TLR conditions rather than SLR. Moreover, the maximum SCP is almost the same, providing the water inertia time constants of both the main and branch pipelines are kept constant.

Funder

CRSRI Open Research Program

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3