Abstract
This paper presents a robust continuous control set model predictive control (CCS-MPC) method to control the output voltage of a three-phase inverter in uninterruptible power supplies (UPS). A robust disturbance observer (DOB) is proposed to estimate the load current of the three-phase UPS without a steady-state error, taking the effect of model uncertainties into account. A CCS-MPC is designed using the DOB for reference voltage tracking purpose, and input constraints are considered in the controller design to calculate the optimal control input. Model uncertainties are defined using polytopic uncertainty class, and a linear matrix inequality (LMI) optimization method is used to compute the optimal observer gain matrix. Another robust controller (RC) is designed based on the DOB and compared with CCS-MPC. The effectiveness of the proposed method (the DOB based CCS-MPC) is evaluated for resistive, inductive, and nonlinear loads then compared with other control methods using a three-phase 5-KVA laboratory experiment UPS system.
Funder
National Research Foundation of Korea
The Scientific and Research Council of Turkey
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献