Abstract
Lithium aluminate, LiAlO2, is a material that is presently being considered as a tritium breeder material in fusion reactors and coating material in Li-conducting electrodes. Here, we employ atomistic simulation techniques to show that the lowest energy intrinsic defect process is the cation anti-site defect (1.10 eV per defect). This was followed closely by the lithium Frenkel defect (1.44 eV per defect), which ensures a high lithium content in the material and inclination for lithium diffusion from formation of vacancies. Li self-diffusion is three dimensional and exhibits a curved pathway with a migration barrier of 0.53 eV. We considered a variety of dopants with charges +1 (Na, K and Rb), +2 (Mg, Ca, Sr and Ba), +3 (Ga, Fe, Co, Ni, Mn, Sc, Y and La) and +4 (Si, Ge, Ti, Zr and Ce) on the Al site. Dopants Mg2+ and Ge4+ can facilitate the formation of Li interstitials and Li vacancies, respectively. Trivalent dopants Fe3+, Ni3+ and Mn3+ prefer to occupy the Al site with exoergic solution energies meaning that they are candidate dopants for the synthesis of Li (Al, M) O2 (M = Fe, Ni and Mn) compounds.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献