Trade-Offs among Sensing, Reporting, and Transmission in Cooperative CRNs

Author:

Liu XiaoyingORCID,Zheng KechenORCID

Abstract

Cooperative spectrum sensing (CSS) has been verified as an effective approach to improve the sensing performances of cognitive radio networks (CRNs). Compared with existing works that commonly consider fusion with fixed inputs and neglect the duration of the reporting period in the design, we novelly investigate a fundamental trade-off among three periods of CSS: sensing, reporting, and transmission periods, and evaluate the impact of the fusion rule with a varying number of local sensing results. To be specific, the sensing time could be traded for additional mini-slots to report more local sensing results for fusion, or it could be traded for longer transmission time. In the CRNs with a given durations of sensing/reporting/transmission periods, we, respectively, formulate the throughput and collision probability and optimize the throughput under the collision constraint. The theoretical results show that, in the specific value intervals of the sensing parameters, the collision constraint provides an upper bound of the number of mini-slots in the reporting period or a lower bound of the sensing duration. We provide the approach to the maximum throughput in some cases.Finally, numerical results are presented to validate theoretical results.

Funder

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3