Increasing the Generalization of Supervised Fabric Anomaly Detection Methods to Unseen Fabrics

Author:

Rippel OliverORCID,Zwinge CorinnaORCID,Merhof DoritORCID

Abstract

Fabric anomaly detection (AD) tries to detect anomalies (i.e., defects) in fabrics, and fabric AD approaches are continuously improved with respect to their AD performance. However, developed solutions are known to generalize poorly to previously unseen fabrics, posing a crucial limitation to their applicability. Moreover, current research focuses on adapting converged models to previously unseen fabrics in a post hoc manner, rather than training models that generalize better in the first place. In our work, we explore this potential for the first time. Specifically, we propose that previously unseen fabrics can be regarded as shifts in the underlying data distribution. We therefore argue that factors which reportedly improve a model’s resistance to distribution shifts should also improve the performance of supervised fabric AD methods on unseen fabrics. Hence, we assess the potential benefits of: (I) vicinal risk minimization (VRM) techniques adapted to the fabric AD use-case, (II) different loss functions, (III) ImageNet pre-training, (IV) dataset diversity, and (V) model architecture as well as model complexity. The subsequently performed large-scale analysis reveals that (I) only the VRM technique, AugMix, consistently improves performance on unseen fabrics; (II) hypersphere classifier outperforms other loss functions when combined with AugMix and (III) ImageNet pre-training, which is already beneficial on its own; (IV) increasing dataset diversity improves performance on unseen fabrics; and (V) architectures with better ImageNet performance also perform better on unseen fabrics, yet the same does not hold for more complex models. Notably, the results show that not all factors and techniques which reportedly improve a model’s resistance to distribution shifts in natural images also improve the generalization of supervised fabric AD methods to unseen fabrics, demonstrating the necessity of our work. Additionally, we also assess whether the performance gains of models which generalize better propagate to post hoc adaptation methods and show this to be the case. Since no suitable fabric dataset was publicly available at the time of this work, we acquired our own fabric dataset, called OLP, as the basis for the above experiments. OLP consists of 38 complex, patterned fabrics, more than 6400 images in total, and is made publicly available.

Funder

Federal Ministry of Education and Research

German Federation of Industrial Research Associations

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference76 articles.

1. FDAS: A Knowledge-based Framework for Analysis of Defects in Woven Textile Structures

2. Allgemeine Betrachtungen zur Gewebeinspektion an der Webmaschine;Riethmüller;Melliand Textilberichte,2000

3. Defect detection and classification on web textile fabric using multiresolution decomposition and neural networks

4. Visual Inspection: A Review of the Literature;See,2012

5. A Survey of Automated Visual Inspection

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3