Construction of Data-Driven Performance Digital Twin for a Real-World Gas Turbine Anomaly Detection Considering Uncertainty

Author:

Ma Yangfeifei1,Zhu Xinyun2,Lu Jilong2,Yang Pan3,Sun Jianzhong2

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

3. College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Anomaly detection and failure prediction of gas turbines is of great importance for ensuring reliable operation. This work presents a novel approach for anomaly detection based on a data-driven performance digital twin of gas turbine engines. The developed digital twin consists of two parts: uncertain performance digital twin (UPDT) and fault detection capability. UPDT is a probabilistic digital representation of the expected performance behavior of real-world gas turbine engines operating under various conditions. Fault detection capability is developed based on detecting UPDT outputs that have low probability under the training distribution. A novel anomaly measure based on the first Wasserstein distance is proposed to characterize the entire flight data, and a threshold can be applied to this measure to detect anomaly flights. The proposed UPDT with uncertainty quantification is trained with the sensor data from an individual physical reality and the outcome of the UPDT is intended to deliver the health assessment and fault detection results to support operation and maintenance decision-making. The proposed method is demonstrated on a real-world dataset from a typical type of commercial turbofan engine and the result shows that the F1 score reaches a maximum of 0.99 with a threshold of 0.45. The case study demonstrated that the proposed novel anomaly detection method can effectively identify the abnormal samples, and it is also possible to isolate anomalous behavior in a single performance signal, which is helpful for further fault diagnosis once an anomaly is detected.

Funder

National Natural Science Foundation of China

Fund of Shanghai Engineering Research Center of Civil Aircraft Health Monitoring

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3