Dropout Deep Belief Network Based Chinese Ancient Ceramic Non-Destructive Identification

Author:

Huang Jizhong,Guan Yepeng

Abstract

A non-destructive identification method was developed here based on dropout deep belief network in multi-spectral data of ancient ceramic. A fractional differential algorithm was proposed to enhance the spectral details by making use of the difference between the first and second-order differential pre-process spectral data. An unsupervised multi-layer restricted Boltzmann machine (RBM) was employed to extract some high-level features during pre-training. Some weight and bias values trained by RBM were used to initialize a back propagation (BP) neural network. The RBM deep belief network was fine-tuned by the BP neural network to promote the initiative performance of network training, which helped to overcome local optimal limitation of the network due to the random initializing weight parameter. The dropout strategy has been put forward into the RBM network to solve the over-fitting of small sample spectral data. The experimental results show that the proposed method has excellent recognition performance of the ceramics by comparisons with some other ones.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3