Author:
Huang Jizhong,Guan Yepeng
Abstract
A non-destructive identification method was developed here based on dropout deep belief network in multi-spectral data of ancient ceramic. A fractional differential algorithm was proposed to enhance the spectral details by making use of the difference between the first and second-order differential pre-process spectral data. An unsupervised multi-layer restricted Boltzmann machine (RBM) was employed to extract some high-level features during pre-training. Some weight and bias values trained by RBM were used to initialize a back propagation (BP) neural network. The RBM deep belief network was fine-tuned by the BP neural network to promote the initiative performance of network training, which helped to overcome local optimal limitation of the network due to the random initializing weight parameter. The dropout strategy has been put forward into the RBM network to solve the over-fitting of small sample spectral data. The experimental results show that the proposed method has excellent recognition performance of the ceramics by comparisons with some other ones.
Funder
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献