Effect of the Content of Micro-Active Copper Tailing on the Strength and Pore Structure of Cementitious Materials

Author:

Zhang Liming,Liu Songbai,Song Dongsheng

Abstract

This study investigates the effect of micr-oaggregate filling with copper tailing on the pore structure of cement paste containing copper tailing (CPCT). The particle size of the CPCT and the pore structure of CPCT were analyzed by laser particle size analysis and mercury instruction porosimetry (MIP). Results showed that at the early stage of curing time, with increasing copper tailing content, the compressive strength of cement mortar with copper tailing (CMCT) was lower, and the porosity and pore diameter of CPCT were higher and greater; with the extension of curing age, when the content of copper tailing was less than 30%, the compressive strength of CMCT and the porosity of CPCT changed slightly with the increase of the content of copper tailing. However, the maximum hole diameter of CPCT decreased gradually (a curing age between 7 d and 365 d under standard conditions). Scanning electron microscopy analysis showed that at the early stage of cement hydration in the CPCT, the copper tailing did not fill the pores in CPCT well, while in the later stage of cement hydration, the microaggregates of copper tailing filled the pores well and closely combined with the surrounding hydration products. In the later stage of cement hydration, the microaggregate filling of copper tailing was primarily responsible for the strength increase of the CMCT.

Funder

the Science and Technology Project of Jiangxi education department

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

1. Study of dust suppression by atomized water from high pressure sprays in mines;Cheng;J. China Univ. Min. Technol.,2011

2. Survey and analysis of the Cooper tailing resources in China;Yu;J. Met. Mine,2009

3. Mechanical properties of concrete with Sarcheshmeh mineral complex copper slag as a part of cementitious materials;Seyed Rez;Constr. Build. Mater.,2017

4. Copper tailings as a potential additive in concrete: Consistency, strength and toxic metal immobilization properties;Onuaguluchi;Indian J. Eng. Mater. Sci.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3