Fracture Parameters of Cement Mortar with Different Structural Dimensions Under the Direct Tension Test

Author:

Rhee InkyuORCID,Lee Jun Seok,Roh Young-SookORCID

Abstract

In this paper, we measured the fracture properties of cement mortar—which is composed of sand and has a nearly constant diameter—using a direct tension test. Four double-notched mortar bar specimens with different structural dimensions were assessed. The failure load, load-crack mouth opening displacement, and elongation of the gauge length were measured under direct displacement control. The fractured surfaces were scanned and measured so that we could calculate the tensile strength accurately and determine the fracture energy and characteristic length. The average ratio of total fracture energy (GF) to specific fracture energy (Gf) was 1.94; this was lower than the typical value for concrete, of 2.5. The direct tension test showed that the double-notched mortar specimens had a smaller fracture processing zone after the initiation of tensile cracks, so the tail portion of the softening branch was small. This decreased the GF/Gf ratio. We verified this result based on a nonlinear fracture mechanics simulation and found that it agreed well with our experimental results. We also investigated the size effects of four different scaled specimens while holding the ratio of structural dimension, d, and notch length, a is constant, so that there was no shape effect. The traditional linear elastic fracture mechanics (LEFM) prediction and Bažant’s size effect law yield a gradient closer to 1/2 in the case of relatively large specimens. In the case of our cement mortar specimens, this prediction was not supported, where the value of the slope was 1/0.727. This was unexpected because LEFM predicts strong size effects. One possible explanation for this result is that the size effects of concrete are most often evaluated using a bending test; also, concrete has a larger maximum aggregate size than mortar. Due to the random heterogeneities in aggregate distribution, higher tail energies may be seen for concrete, leading to differences in the GF/Gf ratio. At the same time, the peak tensile stress could be affected by the relationship between structural dimensions and aggregate size.

Funder

NRF

Publisher

MDPI AG

Subject

General Materials Science

Reference36 articles.

1. Quasibrittle fracture scaling and size effect

2. Concrete Fracture: A Multiscale Approach;Van Mier,2013

3. Size Effect in Blunt Fracture: Concrete, Rock, Metal

4. Fracture and Size Effect in Concrete and other Quasibrittle Materials;Bažant,1997

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3