Offline Scaling of IoT Devices in IOTA Blockchain

Author:

Rawat AbhimanyuORCID,Daza VanesaORCID,Signorini MatteoORCID

Abstract

An increased pattern of hidden Internet of Things (IoT) devices has been observed. Due to the increased number of security attacks, a large number of IoT devices are disappearing from the public internet. Operating blockchain operations in such ad hoc connectivity becomes challenging. However, multiple past studies have pointed towards IOTA Distributed Ledger Technology (DLT) that closely caters to offline blockchain use cases. However, there has been little to no empirical study or introduction to time bounds on transaction confirmation. Therefore, this study explains what provisions the existing IOTA blockchain has to accommodate the increased pattern of hidden IoT devices, and if IOTA is truly sufficient as a solution. In summary, we approach research questions by analyzing the studies that explore the trend of offline IoT devices and evaluating the relevance of offline blockchains, assessing the IOTA specification and codebase around offline transaction-making capabilities and pointing out some bounds that IOTA blockchain nodes must follow towards incoming transactions. Furthermore, we confirm by experimental runs that outside and within the tight time bounds transactions in offline Tangle can become stale and not get confirmed, and the effective time-bound can be even less. Realizing the need for a better offline blockchain scalability solution.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PUFchain 3.0: Hardware-Assisted Distributed Ledger for Robust Authentication in Healthcare Cyber–Physical Systems;Sensors;2024-01-31

2. Real‐World Applications of BC Technology in Internet of Things;Machine Learning Applications;2023-12-11

3. A Game Theoretical Analysis of Non-Linear Blockchain System;Distributed Ledger Technologies: Research and Practice;2023-07-14

4. The combined use of IoT and Blockchain in Logistics: a comparative experiment;2023 8th International Conference on Smart and Sustainable Technologies (SpliTech);2023-06-20

5. LNMesh: Who Said You need Internet to send Bitcoin? Offline Lightning Network Payments using Community Wireless Mesh Networks;2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3