Calibration of Spatially Distributed Hydrological Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a Vietnamese River Basin

Author:

Ha LanORCID,Bastiaanssen Wim,Van Griensven Ann,Van Dijk Albert,Senay Gabriel

Abstract

In this paper, evapotranspiration (ET) and leaf area index (LAI) were used to calibrate the SWAT model, whereas remotely sensed precipitation and other climatic parameters were used as forcing data for the 6300 km2 Day Basin, a tributary of the Red River in Vietnam. The efficacy of the Sequential Uncertainty Fitting (SUFI-2) parameter sensitivity and optimization model was tested with area specific remote sensing input parameters for every Hydrological Response Units (HRU), rather than with measurements of river flow representing a large set of HRUs, i.e., a bulk calibration. Simulated monthly ET correlations with remote sensing estimates showed an R2 = 0.71, Nash–Sutcliffe Efficiency NSE = 0.65, and Kling Gupta Efficiency KGE = 0.80 while monthly LAI showed correlations of R2 = 0.59, NSE = 0.57 and KGE = 0.83 over a five-year validation period. Accumulated modelled ET over the 5-year calibration period amounted to 5713 mm compared to 6015 mm of remotely sensed ET, yielding a difference of 302 mm (5.3%). The monthly flow at two flow measurement stations were adequately estimated (R2 = 0.78 and 0.55, NSE = 0.71 and 0.63, KGE = 0.59 and 0.75 for Phu Ly and Ninh Binh, respectively). This outcome demonstrates the capability of SWAT model to obtain spatial and accurate simulation of eco-hydrological processes, also when rivers are ungauged and the water withdrawal system is complex.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference90 articles.

1. Accounting for Water Use and Productivity;Molden,1997

2. Water accounting in Australia

3. Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements

4. Water Accounting in Selected Asian River, Basins: Pilot Study in Cambodia;Salvadore,2016

5. Trends in water and agricultural development;Molden,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3