Enhancing Elderly Care through Low-Cost Wireless Sensor Networks and Artificial Intelligence: A Study on Vital Sign Monitoring and Sleep Improvement

Author:

Del-Valle-Soto Carolina1ORCID,Briseño Ramon A.2,Velázquez Ramiro3ORCID,Guerra-Rosales Gabriel1ORCID,Perez-Ochoa Santiago1,Preciado-Bazavilvazo Isaac H.1,Visconti Paolo4ORCID,Varela-Aldás José5ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Mexico

2. Centro Universitario de Ciencias Económico Administrativas, Universidad de Guadalajara, Zapopan 45180, Mexico

3. Facultad de Ingeniería, Universidad Panamericana, Aguascalientes 20296, Mexico

4. Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy

5. Centro de Investigación de Ciencias Humanas y de la Educación (CICHE), Universidad Indoamérica, Ambato 180103, Ecuador

Abstract

This research explores the application of wireless sensor networks for the non-invasive monitoring of sleep quality and vital signs in elderly individuals, addressing significant challenges faced by the aging population. The study implemented and evaluated WSNs in home environments, focusing on variables such as breathing frequency, deep sleep, snoring, heart rate, heart rate variability (HRV), oxygen saturation, Rapid Eye Movement (REM sleep), and temperature. The results demonstrated substantial improvements in key metrics: 68% in breathing frequency, 68% in deep sleep, 70% in snoring reduction, 91% in HRV, and 85% in REM sleep. Additionally, temperature control was identified as a critical factor, with higher temperatures negatively impacting sleep quality. By integrating AI with WSN data, this study provided personalized health recommendations, enhancing sleep quality and overall health. This approach also offered significant support to caregivers, reducing their burden. This research highlights the cost-effectiveness and scalability of WSN technology, suggesting its feasibility for widespread adoption. The findings represent a significant advancement in geriatric health monitoring, paving the way for more comprehensive and integrated care solutions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3