Workflow Trace Profiling and Execution Time Analysis in Quantitative Verification

Author:

Su Guoxin1ORCID,Liu Li2ORCID

Affiliation:

1. School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522, Australia

2. School of Big Data & Software Engineering, Chongqing University, Chongqing 400044, China

Abstract

Workflows orchestrate a collection of computing tasks to form a complex workflow logic. Different from the traditional monolithic workflow management systems, modern workflow systems often manifest high throughput, concurrency and scalability. As service-based systems, execution time monitoring is an important part of maintaining the performance for those systems. We developed a trace profiling approach that leverages quantitative verification (also known as probabilistic model checking) to analyse complex time metrics for workflow traces. The strength of probabilistic model checking lies in the ability of expressing various temporal properties for a stochastic system model and performing automated quantitative verification. We employ semi-Makrov chains (SMCs) as the formal model and consider the first passage times (FPT) measures in the SMCs. Our approach maintains simple mergeable data summaries of the workflow executions and computes the moment parameters for FPT efficiently. We describe an application of our approach to AWS Step Functions, a notable workflow web service. An empirical evaluation shows that our approach is efficient for computer high-order FPT moments for sizeable workflows in practice. It can compute up to the fourth moment for a large workflow model with 10,000 states within 70 s.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3