Measuring the Effectiveness of Carbon-Aware AI Training Strategies in Cloud Instances: A Confirmation Study

Author:

Vergallo Roberto1ORCID,Mainetti Luca1ORCID

Affiliation:

1. Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy

Abstract

While the massive adoption of Artificial Intelligence (AI) is threatening the environment, new research efforts begin to be employed to measure and mitigate the carbon footprint of both training and inference phases. In this domain, two carbon-aware training strategies have been proposed in the literature: Flexible Start and Pause & Resume. Such strategies—natively Cloud-based—use the time resource to postpone or pause the training algorithm when the carbon intensity reaches a threshold. While such strategies have proved to achieve interesting results on a benchmark of modern models covering Natural Language Processing (NLP) and computer vision applications and a wide range of model sizes (up to 6.1B parameters), it is still unclear whether such results may hold also with different algorithms and in different geographical regions. In this confirmation study, we use the same methodology as the state-of-the-art strategies to recompute the saving in carbon emissions of Flexible Start and Pause & Resume in the Anomaly Detection (AD) domain. Results confirm their effectiveness in two specific conditions, but the percentage reduction behaves differently compared with what is stated in the existing literature.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3