Increasing the Security of Network Data Transmission with a Configurable Hardware Firewall Based on Field Programmable Gate Arrays

Author:

Grossi Marco1ORCID,Alfonsi Fabrizio2,Prandini Marco3ORCID,Gabrielli Alessandro24ORCID

Affiliation:

1. Department of Electrical Energy and Information Engineering “Guglielmo Marconi” (DEI), Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy

2. Istituto Nazionale di Fisica Nucleare (INFN) Bologna, 40127 Bologna, Italy

3. Department of Computer Science and Engineering, Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy

4. Department of Physics and Astronomy “Augusto Righi” (DIFA), Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy

Abstract

One of the most common mitigations against network-borne security threats is the deployment of firewalls, i.e., systems that can observe traffic and apply rules to let it through if it is benign or drop packets that are recognized as malicious. Cheap and open-source (a feature that is greatly appreciated in the security world) software solutions are available but may be too slow for high-rate channels. Hardware appliances are efficient but opaque and they are often very expensive. In this paper, an open-hardware approach is proposed for the design of a firewall, implemented on off-the-shelf components such as an FPGA (the Xilinx KC705 development board), and it is tested using controlled Ethernet traffic created with a packet generator as well as with real internet traffic. The proposed system can filter packets based on a set of rules that can use the whitelist or blacklist approach. It generates a set of statistics, such as the number of received/transmitted packets and the amount of received/transmitted data, which can be used to detect potential anomalies in the network traffic. The firewall has been experimentally validated in the case of a network data throughput of 1 Gb/s, and preliminary simulations have shown that the system can be upgraded with minor modifications to work at 10 Gb/s. Test results have shown that the proposed firewall features a latency of 627 ns and a maximum data throughput of 0.982 Gb/s.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3