Internet Traffic Prediction with Distributed Multi-Agent Learning

Author:

Jiang WeiweiORCID,He Miao,Gu Weixi

Abstract

Internet traffic prediction has been considered a research topic and the basis for intelligent network management and planning, e.g., elastic network service provision and content delivery optimization. Various methods have been proposed in the literature for Internet traffic prediction, including statistical, machine learning and deep learning methods. However, most of the existing approaches are trained and deployed in a centralized approach, without considering the realistic scenario in which multiple parties are concerned about the prediction process and the prediction model can be trained in a distributed approach. In this study, a distributed multi-agent learning framework is proposed to fill the research gap and predict Internet traffic in a distributed approach, in which each agent trains a base prediction model and the individual models are further aggregated with the cooperative interaction process. In the numerical experiments, two sophisticated deep learning models are chosen as the base prediction model, namely, long short-term memory (LSTM) and gated recurrent unit (GRU). The numerical experiments demonstrate that the GRU model trained with five agents achieves state-of-the-art performance on a real-world Internet traffic dataset collected in a campus backbone network in terms of root mean square error (RMSE) and mean absolute error (MAE).

Funder

This research is supported by the Fundamental Research Funds for the Central Universities.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference47 articles.

1. Machine learning-based approach: Global trends, research directions, and regulatory standpoints;Pugliese;Data Sci. Manag.,2021

2. Ensemble learning-based modeling and short-term forecasting algorithm for time series with small sample;Zhang;Eng. Rep.,2022

3. New developments in wind energy forecasting with artificial intelligence and big data: A scientometric insight;Zhao;Data Sci. Manag.,2022

4. Causalbg: Causal recurrent neural network for the blood glucose inference with IoT platform;He;IEEE Internet Things J.,2019

5. Comparative study of three stochastic future weather forecast approaches: A case study;Shankarnarayan;Data Sci. Manag.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The New Analytical Model of Free Resources in the Limited Availability Resources;Journal of Telecommunications and Information Technology;2023-12-27

2. Deep Learning for Network Traffic Prediction: An Overview;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

3. Machine Learning-based Multi-Class Traffic Management for Smart Grid Communication Network;Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing;2023-10-08

4. Graph Neural Network for Traffic Forecasting: The Research Progress;ISPRS International Journal of Geo-Information;2023-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3