Author:
Jin Shixin,Yu Jiali,Zheng Yuansheng,Wang Wen-Yi,Xin Binjie,Kan Chi-Wai
Abstract
In this study, we simulated the electric field distribution of side-by-side electrospinning by using the finite element method (FEM), and studied the effects of spinneret wall thickness, spinning voltage and receiving distance on the distribution of the electrostatic field. The receiving distance was selected as a variable in the experimental, a series of PAN/PSA composite nanofiber membranes were prepared by using a self-made side by side electrospinning device. The membranes were tested by Fourier-transform infrared (FTIR), thermogravimetric analysis (TG), and scanning electron microscope (SEM). The prepared membranes were also treated by high-temperature treatment, and the change of fiber diameter and conductivity of the membrane before and after high-temperature treatment were studied. It was found that the PAN/PSA carbonized nanofibers could achieve a better performance in heat resistance and conductivity at 200 mm receiving distance.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献