Inhibition of TRPV1 Channel Activity in Human CD4+ T Cells by Nanodiamond and Nanoplatinum Liquid, DPV576

Author:

Ghoneum Mamdooh,Gimzewski James,Ghoneum Aya,Katano Hideki,Paw U Clarissa,Agrawal AnshuORCID

Abstract

Background: Transient receptor potential vanilloid (TRPV) channels act as sensors of pain, temperature, and other external stimuli. We have recently shown that DPV576, an aqueous mixture of nanodiamond (ND) and nanoplatinum (NP), can modulate the activity of TRPV on human primary keratinocytes, suggesting their potential as a possible pain modulator. Here, we sought to examine the effect of DPV576 in modulating the functions of human CD4+ T lymphocytes and whether the modulation is mediated via TRPV channels. Materials and methods: Human primary CD4+ T cells were activated with anti CD3/CD28 with and without DPV576 at 1:10 and 1:100 dilutions for 24 h in vitro. TRPV receptor expression (TRPV1 and TRPV4) on CD4+ T cells were examined by flow cytometry. The capacity of DPV576 to modulate the activity of TRPV1 agonist capsaicin in CD4+ T cells was also determined. Activation of CD4+ T cells was determined by production of cytokines TNF-α, IFN-γ, and IL-10 using specific ELISA kits. Results: DPV576 treatment of CD4+ T cells that were activated with anti CD3/CD28 resulted in decreased expression of the TRPV1 channel, but had no effect on TRPV4. This was accompanied by decreased secretion of IFN-γ and reduced expression of TRPV1 in capsaicin activated CD4+ T cells. In addition, DPV576 inhibited the capsaicin, induced the production of IFN-γ, and enhanced the secretion of IL-10. Conclusion: We conclude that short term exposure to DPV576 inhibits the activity of TRPV1 channels in CD4+ T lymphocytes, which may suggest its possible beneficial use for pain management.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3