Molecular Dynamics Simulation on B3-GaN Thin Films under Nanoindentation

Author:

Chen Chen,Li Haitao,Xiang Henggao,Peng Xianghe

Abstract

The B3-GaN thin film was investigated by performing large-scale molecular dynamics (MD) simulation of nanoindentation. Its plastic behavior and the corresponding mechanism were studied. Based on the analysis on indentation curve, dislocation density, and orientation dependence, it was found that the indentation depths of inceptive plasticity on (001), (110), and (111) planes were consistent with the Schmid law. The microstructure evolutions during the nanoindentation under different conditions were focused, and two formation mechanisms of prismatic loop were proposed. The “lasso”-like mechanism was similar to that in the previous research, where a shear loop can translate into a prismatic loop by cross-slip; and the extended “lasso”-like mechanism was not found to be reported. Our simulation showed that the two screw components of a shear loop will glide on another loop until they encounter each other and eventually produce a prismatic dislocation loop.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3