Simultaneous Estimation of Rebar Diameter and Cover Thickness by a GPR-EMI Dual Sensor

Author:

Zhou Feng,Chen Zhongchang,Liu Hai,Cui Jie,Spencer Billie,Fang Guangyou

Abstract

Precise characterization of reinforcing bars (rebars) in a concrete structure is of significant importance for construction quality control and post-disaster safety evaluation. This paper integrates ground-penetrating radar (GPR) and electromagnetic induction (EMI) methods for simultaneous estimation of rebar diameter and cover thickness. A prototype of GPR-EMI dual sensor is developed, and a calibration experiment is conducted to collect a standard EMI dataset corresponding to various rebar diameters and cover thicknesses. The handheld testing cart can synchronously collect both GPR and EMI data when moving on the concrete surface, from which a data processing algorithm is proposed to simultaneously estimate the rebar diameter and cover thickness. Firstly, by extracting the apex of the hyperbolic reflection from the rebar in the preprocessed GPR profile, the rebar position is determined and further used to extract the effective EMI curve. Then, the rebar diameter and cover thickness are simultaneously estimated from the minimum mean square error between the measured and calibrated EMI data under the constraint of the GPR-estimated cover thickness. A laboratory experiment is performed using four casted concrete specimens with 11 embedded steel rebars. The results show that the diameters of 10 rebars are correctly estimated out of the 11 rebars, and the maximum estimation error for the cover thickness is 6.7%. A field trial is carried out in a newly-constructed building, and the diameters of four tested rebars are all accurately estimated while the estimation errors of the cover thickness are less than 5%. It is concluded that the developed GPR-EMI dual sensor and the proposed algorithm can estimate the rebar diameter and cover thickness accurately by a single scan.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3