On Forbidden Subgraphs of (K2, H)-Sim-(Super)Magic Graphs

Author:

Ashari Yeva FadhilahORCID,Salman A.N.M.ORCID,Simanjuntak RinoviaORCID

Abstract

A graph G admits an H-covering if every edge of G belongs to a subgraph isomorphic to a given graph H. G is said to be H-magic if there exists a bijection f:V(G)∪E(G)→{1,2,…,|V(G)|+|E(G)|} such that wf(H′)=∑v∈V(H′)f(v)+∑e∈E(H′)f(e) is a constant, for every subgraph H′ isomorphic to H. In particular, G is said to be H-supermagic if f(V(G))={1,2,…,|V(G)|}. When H is isomorphic to a complete graph K2, an H-(super)magic labeling is an edge-(super)magic labeling. Suppose that G admits an F-covering and H-covering for two given graphs F and H. We define G to be (F,H)-sim-(super)magic if there exists a bijection f′ that is simultaneously F-(super)magic and H-(super)magic. In this paper, we consider (K2,H)-sim-(super)magic where H is isomorphic to three classes of graphs with varied symmetry: a cycle which is symmetric (both vertex-transitive and edge-transitive), a star which is edge-transitive but not vertex-transitive, and a path which is neither vertex-transitive nor edge-transitive. We discover forbidden subgraphs for the existence of (K2,H)-sim-(super)magic graphs and classify classes of (K2,H)-sim-(super)magic graphs. We also derive sufficient conditions for edge-(super)magic graphs to be (K2,H)-sim-(super)magic and utilize such conditions to characterize some (K2,H)-sim-(super)magic graphs.

Funder

Indonesian National Research and Innovation Agency

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference21 articles.

1. Magic Valuations of Finite Graphs

2. Another tree conjecture;Ringel;Bull. Inst. Combin. Appl.,1996

3. Super edge-magic graphs;Enomoto;SUT J. Math.,1998

4. The place of super edge-magic labelings among other classes of labelings

5. New constructions of magic and antimagic graph labelings;Bača;Util. Math.,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forbidden family of Ph-magic graphs;Electronic Journal of Graph Theory and Applications;2024-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3