An Entropic Gradient Structure in the Network Dynamics of a Slime Mold

Author:

Bonifaci VincenzoORCID

Abstract

The approach to equilibrium in certain dynamical systems can be usefully described in terms of information-theoretic functionals. Well-studied models of this kind are Markov processes, chemical reaction networks, and replicator dynamics, for all of which it can be proven, under suitable assumptions, that the relative entropy (informational divergence) of the state of the system with respect to an equilibrium is nonincreasing over time. This work reviews another recent result of this type, which emerged in the study of the network optimization dynamics of an acellular slime mold, Physarum polycephalum. In this setting, not only the relative entropy of the state is nonincreasing, but its evolution over time is crucial to the stability of the entire system, and the equilibrium towards which the dynamics is attracted proves to be a global minimizer of the cost of the network.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3