Curvature and Entropy Statistics-Based Blind Multi-Exposure Fusion Image Quality Assessment

Author:

He Zhouyan,Song Yang,Zhong Caiming,Li Li

Abstract

The multi-exposure fusion (MEF) technique provides humans a new opportunity for natural scene representation, and the related quality assessment issues are urgent to be considered for validating the effectiveness of these techniques. In this paper, a curvature and entropy statistics-based blind MEF image quality assessment (CE-BMIQA) method is proposed to perceive the quality degradation objectively. The transformation process from multiple images with different exposure levels to the final MEF image leads to the loss of structure and detail information, so that the related curvature statistics features and entropy statistics features are utilized to portray the above distortion presentation. The former features are extracted from the histogram statistics of surface type map calculated by mean curvature and Gaussian curvature of MEF image. Moreover, contrast energy weighting is attached to consider the contrast variation of the MEF image. The latter features refer to spatial entropy and spectral entropy. All extracted features based on a multi-scale scheme are aggregated by training the quality regression model via random forest. Since the MEF image and its feature representation are spatially symmetric in physics, the final prediction quality is symmetric to and representative of the image distortion. Experimental results on a public MEF image database demonstrate that the proposed CE-BMIQA method achieves more outstanding performance than the state-of-the-art blind image quality assessment ones.

Funder

Natural science foundation of zhejiang province

Natural science foundation of Ningbo

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3