Abstract
In this article, we first obtain an embedding result for the Sobolev spaces with variable-order, and then we consider the following Schrödinger–Kirchhoff type equations a+b∫Ω×Ω|ξ(x)−ξ(y)|p|x−y|N+ps(x,y)dxdyp−1(−Δ)ps(·)ξ+λV(x)|ξ|p−2ξ=f(x,ξ),x∈Ω,ξ=0,x∈∂Ω, where Ω is a bounded Lipschitz domain in RN, 1<p<+∞, a,b>0 are constants, s(·):RN×RN→(0,1) is a continuous and symmetric function with N>s(x,y)p for all (x,y)∈Ω×Ω, λ>0 is a parameter, (−Δ)ps(·) is a fractional p-Laplace operator with variable-order, V(x):Ω→R+ is a potential function, and f(x,ξ):Ω×RN→R is a continuous nonlinearity function. Assuming that V and f satisfy some reasonable hypotheses, we obtain the existence of infinitely many solutions for the above problem by using the fountain theorem and symmetric mountain pass theorem without the Ambrosetti–Rabinowitz ((AR) for short) condition.
Funder
Natural Science Foundation of Jiangsu Province
National Key Research and Development Program of China
Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献