Deficits in Performance on a Mechanically Coupled Asymmetrical Bilateral Task in Chronic Stroke Survivors with Mild Unilateral Paresis

Author:

Jayasinghe Shanie A. L.ORCID,Maenza Candice,Good David C.,Sainburg Robert L.

Abstract

Typical upper limb-mediated activities of daily living involve coordination of both arms, often requiring distributed contributions to mechanically coupled tasks, such as stabilizing a loaf of bread with one hand while slicing with the other. We sought to examine whether mild paresis in one arm results in deficits in performance on a bilateral mechanically coupled task. We designed a virtual reality-based task requiring one hand to stabilize against a spring load that varies with displacement of the other arm. We recruited 15 chronic stroke survivors with mild hemiparesis and 7 age-matched neurologically intact adults. We found that stroke survivors produced less linear reaching movements and larger initial direction errors compared to controls (p < 0.05), and that contralesional hand performance was less linear than that of ipsilesional hand. We found a hand × group interaction (p < 0.05) for peak acceleration of the stabilizing hand, such that the dominant right hand of controls stabilized less effectively than the nondominant left hand while stroke survivors showed no differences between the hands. Our results indicate that chronic stroke survivors with mild hemiparesis show significant deficits in reaching aspects of bilateral coordination, but no deficits in stabilizing against a movement-dependent spring load in this task.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How virtual and mechanical coupling impact bimanual tracking;Journal of Neurophysiology;2023-01-01

2. Neural Control of Stopping and Stabilizing the Arm;Frontiers in Integrative Neuroscience;2022-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3