Numerical Investigation on the Formation and Penetration Behavior of Explosively Formed Projectile (EFP) with Variable Thickness Liner

Author:

Yang Dong,Lin Jiajian

Abstract

Explosively formed projectiles (EFPs) are widely used in civil applications and the military field for their excellent impact performance. How to give full play to the energy accumulation effect of explosives and improve the penetration performance has become the main problem of EFP design. The aim of the present study was to investigate the effect of liner structure on EFP formation and its penetration behavior. In order to achieve this, a finite element (FE) model was first established on the basis of the Lagrange and ALE method. Then, formation and penetration performance tests of EFP were performed to verify the validity and feasibility of the proposed FE model, where the configuration, velocity of EFP, and penetration diameter left on the target plate were compared. Finally, by using the proposed FE model, the entire process of the formation and penetration behavior of EFP with axial symmetrical variable thickness liners were analyzed, where spherical-segment liners with uniform and non-uniform thickness were developed. The results were drawn as follows: the numerical simulation error of EFP velocity was less than 5%, and the simulated penetration diameter was compared to the 8.6% error obtained from the experimental method. It demonstrated that the proposed FE model had higher prediction precision. After the explosive was detonated, a forward-folding EFP was formed by the liner with a thin edge thickness, while the EFP formed by the liner with uniform thickness had a backward-folded configuration. It was also found that the liner with a thin edge thickness gave the largest steady velocity of EFP, and it was the lowest by using the liner with uniform thickness. There were two types of loads generated after the formation of an EFP, those were shock wave loading and an EFP, both causing damage in the target plate during the process of an EFP’s penetration into it. The shock wave induced by liners with non-uniform thickness caused higher damage in the target plate, the maximum value of stress was reached at about 4.0 GPa. The forward-folding EFP formed by the liner with the thinnest edge thickness had the largest penetration ability. The backward-folded EFP, owing to the hollow structure, had the worst penetration ability, which failed to penetrate the target plate.

Funder

open foundations of national and local union engineering laboratory for building health monitor-ing and disaster prevention

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3