Deblurring Turbulent Images via Maximizing L1 Regularization

Author:

Duan LizhenORCID,Sun Shuhan,Zhang JianlinORCID,Xu Zhiyong

Abstract

Atmospheric turbulence significantly degrades image quality. A blind image deblurring algorithm is needed, and a favorable image prior is the key to solving this problem. However, the general sparse priors support blurry images instead of explicit images, so the details of the restored images are lost. The recently developed priors are non-convex, resulting in complex and heuristic optimization. To handle these problems, we first propose a convex image prior; namely, maximizing L1 regularization (ML1). Benefiting from the symmetrybetween ML1 and L1 regularization, the ML1 supports clear images and preserves the image edges better. Then, a novel soft suppression strategy is designed for the deblurring algorithm to inhibit artifacts. A coarse-to-fine scheme and a non-blind algorithm are also constructed. For qualitative comparison, a turbulent blur dataset is built. Experiments on this dataset and real images demonstrate that the proposed method is superior to other state-of-the-art methods in blindly recovering turbulent images.

Funder

West Light Foundation for Innovative Talents of the 250 Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference42 articles.

1. Removing camera shake from a single photograph;Fergus,2006

2. Total variation blind deconvolution

3. Image and depth from a conventional camera with a coded aperture

4. Fast image deconvolution using hyper-Laplacian priors;Krishnan;Adv. Neural Inf. Process. Syst.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MIMO optical communication systems based on broadband transmitters and receivers;Applied Optics;2024-07-10

2. Evaluation of neural network algorithms for atmospheric turbulence mitigation;Signal Processing, Sensor/Information Fusion, and Target Recognition XXXI;2022-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3