Deep Neural Network (DNN) for Efficient User Clustering and Power Allocation in Downlink Non-Orthogonal Multiple Access (NOMA) 5G Networks

Author:

Kumaresan S. PrabhaORCID,Tan Chee KeongORCID,Ng Yin Hoe

Abstract

Non-orthogonal multiple access (NOMA) emerges as a promising candidate for 5G, which radically alters the way users share the spectrum. In the NOMA system, user clustering (UC) becomes another research issue as grouping the users on different subcarriers with different power levels has a significant impact on spectral utilization. In previous literature, plenty of works have been devoted to solving the UC problem. Recently, the artificial neural network (ANN) has gained considerable attention due to the availability of UC datasets, obtained from the Brute-Force search (BF-S) method. In this paper, deep neural network-based UC (DNN-UC) is employed to effectively characterize the nonlinearity between the cluster formation with channel diversity and transmission powers. Compared to the ANN-UC, the DNN-UC is more competent as UC is a non-convex NP-complete problem, which cannot be entirely captured by the ANN model. In this work, the DNN-UC is first trained with the training samples and then validated with the testing samples to examine its mean square error (MSE) and throughput performance in an asymmetrical fading NOMA channel. Unlike the ANN-UC, the DNN-UC model offers greater room for hyper-parameter optimizations to maximize its learning capability. With the optimized hyper-parameters, the DNN-UC can achieve near-optimal throughput performance, approximately 97% of the throughput of the BF-S method.

Funder

Multimedia University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3