Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion

Author:

Duo Siwei,Lakoba Taras I.ORCID,Zhang Yanzhi

Abstract

We analytically and numerically investigate the stability and dynamics of the plane wave solutions of the fractional nonlinear Schrödinger (NLS) equation, where the long-range dispersion is described by the fractional Laplacian (−Δ)α/2. The linear stability analysis shows that plane wave solutions in the defocusing NLS are always stable if the power α∈[1,2] but unstable for α∈(0,1). In the focusing case, they can be linearly unstable for any α∈(0,2]. We then apply the split-step Fourier spectral (SSFS) method to simulate the nonlinear stage of the plane waves dynamics. In agreement with earlier studies of solitary wave solutions of the fractional focusing NLS, we find that as α∈(1,2] decreases, the solution evolves towards an increasingly localized pulse existing on the background of a “sea” of small-amplitude dispersive waves. Such a highly localized pulse has a broad spectrum, most of whose modes are excited in the nonlinear stage of the pulse evolution and are not predicted by the linear stability analysis. For α≤1, we always find the solution to undergo collapse. We also show, for the first time to our knowledge, that for initial conditions with nonzero group velocities (traveling plane waves), an onset of collapse is delayed compared to that for a standing plane wave initial condition. For defocusing fractional NLS, even though we find traveling plane waves to be linearly unstable for α<1, we have never observed collapse. As a by-product of our numerical studies, we derive a stability condition on the time step of the SSFS to guarantee that this method is free from numerical instabilities.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3